1st Law of Thermodynamics

- · Used mainly for bookkeeping
- Does...
 - 1. Indicate energy flow into or out of the system
 - 2. Indicate how much energy is involved
- Doesn't indicate why the reaction occurs

Will a reaction be spontaneous?

Spontaneous Processes

- any process that occurs without outside intervention
 - gas fills a container uniformly, never collects at one end of the container
 - wood burns to form CO₂, H₂O and heat, wood doesn't form when CO₂ and H₂O are heated together
- a spontaneous reaction has a direction
- a process spontaneous in one direction...
 - is not spontaneous in the opposite direction

More Examples:

- · egg is dropped and breaks, spontaneous
 - reverse reaction (egg leaps into hand intact) is not spontaneous
- ball rolls down a hill, but never up
- iron rusts if exposed to air and moisture, but rust doesn't change back to iron metal and oxygen

Direction of a spontaneous reaction can depend on temperature

- Example:
 - ice changes to water spontaneously at T>0°C
 - water changes to ice spontaneously at T<0°C

Again, how do you know if a reaction is spontaneous or not?

And why in one direction and not the other?

Entropy, S

- reflects the degree of disorder in a system
 - the larger the S, the more disordered
- processes in which disorder increases tend to be spontaneous
 - Ex: melting, vaporizing, dissolving

- In general, S increases as:
 - solid \rightarrow liquid \rightarrow gas
 - number of gas particles increases
 - molar mass increases
 - number of atoms in the chemical formula
 - temperature increases
- · associated with probability
 - more ways for things to be out of place than for them to be in place

- Ex: Which substance has higher entropy?
 solid CO₂ or gaseous CO₂
- Ex: Is the entropy increasing or decreasing?
 solid sugar added to water to make a solution
 I₂(g) condenses on a cold surface to form crystals

So... Is the reaction spontaneous?

2nd Law of Thermodynamics

- in any spontaneous process, the entropy of the universe increases.
 - entropy is *not* conserved

$$\Delta S_{universe} = \Delta S_{system} + \Delta S_{surroundings}$$

 $\Delta S_{universe}$ >0, spontaneous

 $\Delta S_{universe}$ < 0, spontaneous in the opposite direction

OK... How do you know if the entropy of the universe has increased?

Calculating AS for Chemical Reactions

- $\Delta S^{\circ}_{\text{reaction}} = S^{\circ}_{\text{prod}} S^{\circ}_{\text{react}}$
- S° = standard molar entropy, J/K-mol
- use chart of thermodynamic properties for S° values

Ex:
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

$$\Delta S^{\circ} = 2(192) - [1(192) + 3(131)]$$

= - 201J/K

expect negative, because the # gas molecules decreases

Calculating \Delta S for the Surroundings

$$\Delta S_{surr} = -\Delta H$$

- the sign of ΔS_{surr} depends on the direction of heat flow
 - + for exothermic reactions, for endothermic
- the magnitude of ΔS_{surr} depends on the temperature
 - greater impact at lower temperatures

• Ex: Calculate the ΔS_{surr} at 298K and 1 atm for the following:

(Temperature must be in Kelvin... K = °C + 273)

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

 S° for $NH_3 = -46.19$ kJ/mol

 $\Delta H =$

$$\Delta S_{surr} = \frac{-\Delta H}{T} =$$

So...is the reaction $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ spontaneous?

$$\Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$$

Remember:
Spontaneity of a process is determined
by the entropy change
it produces in the universe.

- If ΔS_{system} and ΔS_{surr} are positive, spontaneous
- If ΔS_{system} and ΔS_{surr} are negative, spontaneous in the opposite direction
- If ΔS_{system} and ΔS_{surr} have opposite signs, spontaneity depends on magnitude of each

Gibbs Free Energy, G

$$\Delta G = \Delta H - T \Delta S$$

- $\Delta G < 0$, forward reaction spontaneous
- $\Delta G > 0$, reverse reaction spontaneous
- $\Delta G = 0$, reaction is at equilibrium
- If $\Delta H < 0$ and $\Delta S > 0$ then $\Delta G < 0$ spontaneous
- If $\Delta H > 0$ and $\Delta S < 0$ then $\Delta G > 0$ not spontaneous

- If ΔH and ΔS have the same sign,
 ΔG depends on...the magnitude of each and the temperature
- if ΔH and ΔS are both negative,
 spontaneous at low temps
- if ΔH and ΔS are both positive,
 spontaneous at high temps

• Calculate ΔH° , ΔS° and ΔG° for the following reaction: $2SO_{\bullet}(g) + O_{\bullet}(g) \rightarrow 2SO_{\bullet}(g)$ at $2S^{\circ}C$. 1 atm

25O ₂ (g)	$+ O_2(g) \rightarrow$	25O ₃ (g)	at 25°C	1 atm
Given:	ΔH _f ° (kJ/mol)	S°(J/K mol)		
SO ₂ (g)	-297	248		
SO ₃ (g)	-396	257		
O ₂ (g)	0	205		
Δ H ° =				
ΔS° =				
Δ G ° =				
(vorify wit	h AG ° ng 1010.	products r	oastants = 1	10 kl)

Another way to determine G...

$$\Delta G^{\circ}_{rxn} = \Delta G^{\circ}_{fprod} - \Delta G^{\circ}_{freact}$$

 $(\Delta G_f^{\circ} = 0 \text{ for elements})$

Ex: Calculate Gibbs Free Energy:

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$$

-50.8 0 -394.4 -237

Spontaneous?

Ex: At what temperature is the following process spontaneous? $Br_2(I) \rightarrow Br_2(g)$

(i.e. What is the boiling point of bromine?)

$$\Delta H = 31.0 \text{ kJ/mol}$$
 $\Delta S = 93.0 \text{ J/K mol}$

$$\Delta G = \Delta H - T\Delta S$$
 $0 = \Delta H - T\Delta S$ $\Delta H = T\Delta S$

$$T = \frac{\Delta H}{\Delta S} = \frac{31000 \ J/mol}{93.0 \frac{J}{K \ mol}} = 333 \ K$$

Above 333 K, T Δ S > Δ H, and Δ G is negative Above 333 K, this reaction (vaporization) is spont.

Coupled Reactions

- Using one spontaneous reaction to drive another non-spontaneous reaction
- · Common in biological systems

- Ex: Metabolism of foods releases energy: $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$ $\Delta G^{\circ} = -2880 \text{ kJ}$
- This free energy is used to convert:
 ADP and phosphate → ATP
 (low energy) (high energy)
- When ATP → ADP, the energy released is used to drive other reactions

Whether or not a reaction is spontaneous
says nothing about how fast a reaction will occur.

We need both *thermodynamics* and *kinetics* to describe a reaction fully.