Reaction Mechanism

- A detailed description of the pathway of a chemical reaction
- Not many reactions occur in a single step
- Usually, a series of steps
 - Each step has an activated complex and a unique E_{a}
 - The slowest step is the rate determining step
 it controls the rate of the overall reaction

Ex:	Overall Reaction		
	$H_2 + Br_2 \rightarrow 2 HBr$		
	Reaction Mechanism		
	$Br_2 \rightarrow 2 Br^-$		
	$\text{Br} + \text{H}_2 \rightarrow \text{HBr} + \text{H}^+$		
	H^+ + $Br_2 \rightarrow HBr$ + Br^-		

Reaction Rate Law

- Expresses the effect of the concentration of each reactant on the rate
- · Determined by experiment only
- [] = molar concentration

Ex: $2H_2 + 2NO \rightarrow N_2 + 2H_2O$

At constant volume, temp, [NO]: doubling [H₂], doubles rate **and** tripling [H₂], triples rate At constant volume, temp, [H₂]: double [NO], 4x rate **and** triple [NO], 9x rate

For this reaction, the <u>rate law</u> is:

Rate = $k[H_2][NO]^2$ k = rate constant

Ex:	A + B	→c	At time = 0
	[A]_	[B],	Initial rate of formation of C
1	0.20	0.20	2.0 x 10 ⁻⁴ M/min
2	0.20	0.40	8.0 x 10 ⁻⁴
3	0.40	0.40	1.6 x 10 ⁻³

a) Write the rate law

Rate = $k[A][B]^2$

b) Calculate the rate constant
2.0 x 10⁻⁴ M/min = k[0.20][0.20]² k = 0.025
8.0 x 10⁻⁴ M/min = k[0.20][0.40]² k = 0.025
1.6 x 10⁻³ M/min = k[0.40][0.40]² k = 0.025
c) If initial concentration of both A and B are 0.30M, what is the rate?
Rate = k[A][B]²
= 0.025(0.30)(0.30)²
= 6.8 x 10⁻⁴ M/min

Reaction Order of a Reactant

- · The exponent on the reactant concentration in the rate law
- Ex: According to the previous rate law: It is first order in A and second order in B

Overall Reaction Order

- The sum of all the reactant orders
- Ex: The reaction above has an overall reaction order of 3 (that's 1+2)

Ex: Determine the rate law for the reaction $A + B \rightarrow C$, given the following data:

	-		
[A] ₀	[B] ₀	[C] After 10 minutes	Rate of production of C
0.100	0.100	0.015	1.5 x 10 ⁻³
0.200	0.100	0.030	3.0 x 10 ⁻³
0.300	0.100	0.045	4.5 x 10 ⁻³
0.100	0.300	0.045	4.5 x 10 ⁻³

Analysis: Rate is directly proportional to [A] and [B] both.

Rate = k[A][B]

Ex: Determine the rate law for the reaction $X + Y \rightarrow Z + W$, given the following data:

		•	
	[X] ₀	[Y] ₀	Rate of production of Z
	0.100	0.100	1.5 x 10 ⁻³
	0.200	0.100	3.0 x 10 ⁻³
	0.100	0.200	6.0 x 10 ⁻³
	0.200	0.200	1.2 x 10 ⁻²

Analysis: Rate is directly proportional to [X], but has a squared effect to [Y]

Rate = $k[X][Y]^2$

Ex: $2NO + O_2 \rightarrow 2NO_2$ Rate = $k[NO]^2[O_2]$ At a temperature of 500°C, the rate of production of NO₂ has been found to be 0.010 M/min when the concentration of NO and O_2 are 0.50 M each.

a) What is the value of the specific rate constant at this temp?

- k = <u>Rate</u>
 - 0.10M/min = 0.080L²/mol²min (0.050M)²(0.50M) [NO]²[O₂]

b) What is the rate of production of NO_2 at 500°C, when the concentration of NO is 0.10M and the concentration of O₂ is 0.30M?

- Rate = $k[NO]^2[O_2]$
 - = (0.080L²/mol²min)(0.10M)²(0.30M)
 - = 2.4 x 10⁻⁴ mol/Lmin
 - = 2.4 x 10⁻⁴ M/min

Arrhenius Equation

Combines three factors:

- number of particles with E_a or more
- number of collisions per second
- number of collisions with correct orientation

constant = 8.314 J/mol K

 $k = Ae^{-Ea/RT}$ Kelvin temp

> activation energy frequency factor (#collisions/orientation) rate constant