Reaction Mechanism

- A detailed description of the pathway of a chemical reaction
- Not many reactions occur in a single step
- Usually, a series of steps
- Each step has an activated complex and a unique E_{a}
- The slowest step is the rate determining step
- it controls the rate of the overall reaction

Reaction Rate Law

- Expresses the effect of the concentration of each reactant on the rate
- Determined by experiment only
- [] = molar concentration

Ex: Overall Reaction

$$
\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}
$$

Reaction Mechanism

$$
\mathrm{Br}_{2} \rightarrow 2 \mathrm{Br}^{-}
$$

$$
\mathrm{Br}^{-}+\mathrm{H}_{2} \rightarrow \mathrm{HBr}+\mathrm{H}^{+}
$$

$$
\mathrm{H}^{+}+\mathrm{Br}_{2} \rightarrow \mathrm{HBr}+\mathrm{Br}^{-}
$$

$$
\begin{gathered}
\text { Ex: } \quad 2 \mathrm{H}_{2}+2 \mathrm{NO} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
\text { At constant volume, temp, [} \mathrm{NO}]: \\
\text { doubling }\left[\mathrm{H}_{2}\right] \text {, doubles rate and tripling }\left[\mathrm{H}_{2}\right] \text {, triples rate } \\
\text { At constant volume, temp, }\left[\mathrm{H}_{2}\right]:
\end{gathered}
$$

$$
\text { double [NO], } 4 x \text { rate and triple [NO], } 9 x \text { rate }
$$

For this reaction, the rate law is:

$$
\begin{aligned}
& \text { Rate }=k\left[\mathrm{H}_{2}\right][\mathrm{NO}]^{2} \\
& \mathrm{k}=\text { rate constant }
\end{aligned}
$$

b) Calculate the rate constant
$2.0 \times 10^{-4} \mathrm{M} / \mathrm{min}=\mathrm{k}[0.20][0.20]^{2} \quad \mathrm{k}=0.025$
$8.0 \times 10^{-4} \mathrm{M} / \mathrm{min}=\mathrm{k}[0.20][0.40]^{2} \quad k=0.025$
$1.6 \times 10^{-3} \mathrm{M} / \mathrm{min}=k[0.40][0.40]^{2} \quad k=0.025$
c) If initial concentration of both A and B are 0.30 M , what is the rate?

$$
\begin{aligned}
\text { Rate } & =\mathrm{k}[\mathrm{~A}][\mathrm{B}]^{2} \\
& =0.025(0.30)(0.30)^{2} \\
& =\mathbf{6 . 8} \mathbf{\times 1 0 ^ { - 4 }} \mathbf{~ M} / \mathbf{m i n}
\end{aligned}
$$

Reaction Order of a Reactant

- The exponent on the reactant concentration in the rate law
- Ex: According to the previous rate law:

It is first order in A and second order in B

Overall Reaction Order

- The sum of all the reactant orders
- Ex: The reaction above has an overall reaction order of 3 (that's 1+2)

Ex: Determine the rate law for the reaction $X+Y \rightarrow Z+W$ given the following data:

$[\mathrm{X}]_{0}$	$[\mathrm{Y}]_{0}$	Rate of production of Z
0.100	0.100	1.5×10^{-3}
0.200	0.100	3.0×10^{-3}
0.100	0.200	6.0×10^{-3}
0.200	0.200	1.2×10^{-2}

Analysis: Rate is directly proportional to $[\mathrm{X}]$, but has a squared effect to [Y]

$$
\text { Rate }=\mathrm{k}[\mathrm{X}][\mathrm{Y}]^{2}
$$

Ex: Determine the rate law for the reaction $A+B \rightarrow C$, given the following data:

$[\mathrm{A}]_{0}$	$[\mathrm{~B}]_{0}$	$[\mathrm{C}]$ After 10 minutes	Rate of production of C
0.100	0.100	0.015	1.5×10^{-3}
0.200	0.100	0.030	3.0×10^{-3}
0.300	0.100	0.045	4.5×10^{-3}
0.100	0.300	0.045	4.5×10^{-3}

Analysis: Rate is directly proportional to $[A]$ and $[B]$ both.

$$
\text { Rate }=k[A][B]
$$

Ex: $\quad 2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} \quad$ Rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$
At a temperature of $500^{\circ} \mathrm{C}$, the rate of production of NO_{2} has been
found to be $0.010 \mathrm{M} / \mathrm{min}$ when the concentration of NO and O_{2} are 0.50 M each.
a) What is the value of the specific rate constant at this temp?

$$
\mathrm{k}=\frac{\text { Rate }}{[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]} \quad \frac{0.10 \mathrm{M} / \mathrm{min}}{(0.050 \mathrm{M})^{2}(0.50 \mathrm{M})}=0.080 \mathrm{~L}^{2} / \mathrm{mol}^{2} \mathrm{~min}
$$

b) What is the rate of production of NO_{2} at $500^{\circ} \mathrm{C}$, when the concentration of NO is 0.10 M and the concentration of O_{2} is 0.30 M ?

Rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$
$=\left(0.080 \mathrm{~L}^{2} / \mathrm{mol}^{2} \mathrm{~min}\right)(0.10 \mathrm{M})^{2}(0.30 \mathrm{M})$
$=2.4 \times 10^{-4} \mathrm{~mol} / \mathrm{Lmin}$
$=2.4 \times 10^{-4} \mathrm{M} / \mathrm{min}$

Arrhenius Equation

Combines three factors:

- number of particles with E_{a} or more
- number of collisions per second
- number of collisions with correct orientation
Constant $=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$

