DENSITY

Mass per unit volume

amount of material space occupied

$$D = \frac{m}{v}$$

Typical units: g/cm^3 or g/L

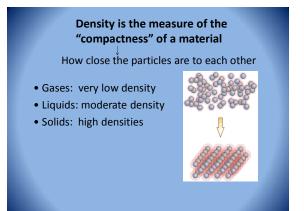
$$D = \frac{m}{V}$$

$$V = \frac{m}{D}$$

$$M = D \times V$$

Density Problems

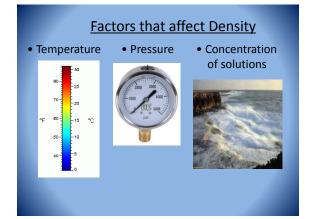
Ex: D = ? m = 25 g $v = 1.0 cm^3$

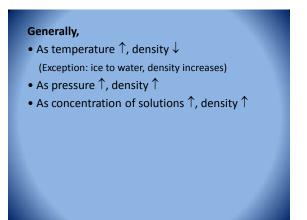

D = m/v $D = 25g/1.0 \text{ cm}^3 = 25 \text{ g/cm}^3$

Ex: $D = 2.16 \text{ g/cm}^3$ m = ? $v = 1.0 \text{ cm}^3$

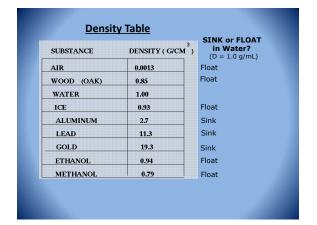
m= D v m = $(2.16 \text{ g/cm}^3)(1.0 \text{ cm}^3)$ = **2.16 g**

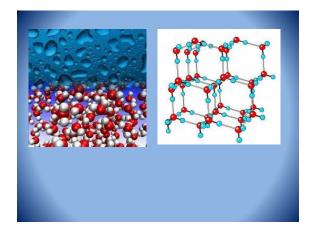
Ex: $D = 8.92 \text{ g/cm}^3$ m = 50 g v = ?

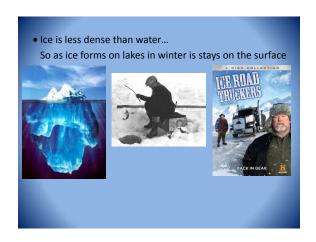

v = m/D $v = 50 g/8.92 g/cm^3 =$ **5.61 cm^3**

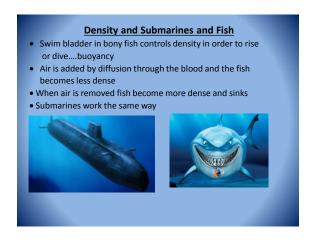


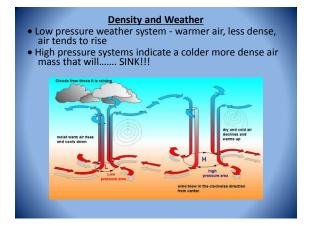
What would take up more space?
A kilogram of feathers...or a kilogram of steel?

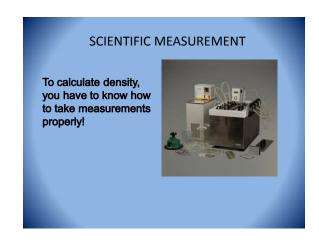

OR











Relative Density The density of a material or substance, relative to another substance Expressed in a ratio: water = 1g/cc Water is the substance to which we generally compare other substances ALSO known as SPECIFIC GRAVITY

Absolute DENSITY The density of a material in its closest "packed form" For water: Absolute Density = 1000kg/m³ at 4°C and 1 atm(pressure) in other words, the greatest density of water is at 4°C