The MOLE

 6.02×10^{23}AVOGADRO'S NUMBER
602000000000000000000000

From mole to mole, the NUMBER is the same, but MASS varies.
1 mole of carbon atoms has 12 times the mass of 1 mole of hydrogen atoms.

In other words:
1 atom $\mathrm{Na}=23.0 \mathrm{amu}$
1 mole $\mathrm{Na}=23.0 \mathrm{~g}$
1 molecule $\mathrm{H}_{2} \mathrm{O}=18.0 \mathrm{amu}$
1 mole $\mathrm{H}_{2} \mathrm{O}=18.0 \mathrm{~g}$

The mole is a definite number of items

$$
6.02 \times 10^{23}
$$

1 mole of pennies $=6.02 \times 10^{23}$ pennies
1 mole of water molecules $=$ 6.02×10^{23} molecules
1 mole of sulfur atoms $=$ 6.02×10^{23} atoms

A mole of atoms (or molecules) has a mass, in grams, which is numerically equal to the atomic mass (or molecular mass) of the substance.

