Thermal Energy

- KE which gets dispersed into/absorbed from molecules in the environment
- The effect of this is observed as a change in the temperature of the surroundings
- Completely random in the kinds of motions it exhibits and in its direction

Note:

Once KE is thermalized, only a portion of it can be converted back into PE

The remainder was dispersed and diluted into the environment, and is effectively lost.

The amount of thermal energy is determined by:

1. Temperature

The higher the temp, the higher the thermal energy

2. Sample size

A cup of 80° water has more thermal energy than a teaspoon of 80° water

3. Composition

$$E_{solid} < E_{liquid} < E_{gas}$$

Temperature

A measure of the *average kinetic energy* of particles in a material

Describes the speed that the molecules "jiggle"

Heat

(the flow of thermal energy)

Adding or removing thermal energy to a substance causes a change in the matter

Either:

The temperature changes

or

The phase changes

If it's causing the temperature to change:

How much the temperature of a material changes depends on:

- The *amount of heat* added or removed
- The mass of the substance
- What the substance is

Specific Heat Capacity

The energy required to raise the temperature of 1 gram of a substance by 1°C

 C_{p}

J/goC or J/g·K

(Note: a 1°C change is also a 1 K change)

- Each substance has a unique C_p
- Substances with a high C_p can absorb or release lots of thermal energy without a significant change in temperature
- Water has a relatively high C_p (4.18 J/g^oC)

$q = m\Delta TC_p$

q = heat energy m = mass

 ΔT = temperature change

C_p = specific heat capacity

Ex: If 1642 J of heat is added to 0.0230kg of iron, how much would the temperature change? (C_n for iron = 0.470 J/g°C)

$$q = m\Delta TCp$$

$$1642J = (23.0g)\Delta T(0.470J/g^{0}C)$$

$$\Delta T = \frac{1642J}{23.0g)(0.470J/g^{0}C)} = 152^{0}C$$

Molar Heat Capacity

The energy required to raise the temperature of 1 mole of a substance by 1°C

J/mol^oC or J/mol·K