Dimensional Analysis

Dimensional Analysis

Conversion Factors

- A Ratio $=1$
- \# on the top is the same/equivalent to \# on the bottom
- Examples:

$$
\frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \quad \frac{5280 \mathrm{ft}}{1 \text { mile }}
$$

- Units cancel like the numbers do

$$
\frac{4 * 3 * 6}{6 * 3}=4 \quad \frac{c m * c m * g}{c m * c m}=g
$$

Ex \#1: How many cm in 32.4 mm?

$$
32.4 \mathrm{~mm} \times \frac{1 \mathrm{~cm}}{10 \mathrm{~mm}}=3.24 \mathrm{~cm}
$$

Put in your calculator: $32.4 / 10=$

Questions to Ask Yourself:

- What is given?
- What is being asked for?
- How to get there from here?

Ex \#2: How many inches in 8.63 miles?
8.63 miles $x \frac{5280 \mathrm{ft}}{1 \text { mile }} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}}=547000$ in

Put in your calculator: $8.63 \times 5280 \times 12=$

Ex \#3: How many gallons in 496 mL? $496 m L \times \frac{1 L}{1000 m L} \times \frac{1 \text { gallon }}{3.7854 L}=0.131$ gallons $3 \infty \quad 5 \quad 3$ Put in your calculator: $496 / 1000 / 3.7854=$

Converting Units that are x^{2} or x^{3}

- Remember... units cancel like the numbers do...

$$
\frac{4 * 3 * 6}{6 * 3}=4 \quad \frac{\mathrm{~cm} * \mathrm{~cm} * g}{\mathrm{~cm} * \mathrm{~cm}}=\mathrm{g}
$$

- This means if you have cm^{2}, you have cm x cm , so...
- To change cm^{2}, you need to use the conversion factor 2 times

$$
32 \mathrm{~cm}^{2} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \times=0.0032 \mathrm{~m}^{2}
$$

COMPOUND UNITS

$\mathrm{g} / \mathrm{cm}^{3}$--- read as "per" = division line
Ex \#4: How many lb/qt in $2.70 \mathrm{~g} / \mathrm{cm}^{3}$?

$$
\begin{gathered}
\frac{2.70 \mathrm{~g}}{1 \mathrm{~cm}^{3}} \times \frac{1 \mathrm{lb}}{453.59 \mathrm{~g}} \times \frac{1 \mathrm{~cm}^{3}}{1 \mathrm{~mL}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \times \frac{1 L}{1.0567 \mathrm{qt}}= \\
5 \\
\\
\text { Put in your calculator: } 2.70 / 453.59 \times 1000 / 1.0567= \\
5
\end{gathered}
$$

Example \#5:

How many cm^{3} are in $16.2 \mathrm{ft}^{3}$?
$16.2 \mathrm{ft}^{3} x \frac{12^{\text {in }}}{1 \mathrm{ft}} x \frac{12 \mathrm{in}}{1 \mathrm{ft}} x \frac{12 \mathrm{in}}{1 \mathrm{ft}} x \frac{2.54 \mathrm{~cm}}{1 \text { in }} x \frac{2.54 \mathrm{~cm}}{1 \text { in }} x \frac{2.54 \mathrm{~cm}}{1 \text { in }}=$
$458,732 \mathrm{~cm}^{3}=459,000 \mathrm{~cm}^{3}=4.59 \times 10^{5} \mathrm{~cm}^{3}$

OR
$16.2 \mathrm{ft}^{3} x \frac{(12 \mathrm{in})^{3}}{(1 \mathrm{ft})^{3}} x \frac{(2.54 \mathrm{~cm})^{3}}{(1 \mathrm{in})^{3}}=458,732 \mathrm{~cm}^{3}$
$=459,000 \mathrm{~cm}^{3}=4.59 \times 10^{5} \mathrm{~cm}^{3}$

Example \#6:

How many cm^{3} are in a block of concrete that measures $2.0 \mathrm{~m} \times 5.6 \mathrm{~m} \times 7.1 \mathrm{~m}$?

$$
V=l \times w \times h=2.0 m \times 5.6 m \times 7.1 m=79.52 m^{3}=80 . m^{3}
$$

$80 . m^{3} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=79520000 \mathrm{~cm}^{3}=8.0 \times 10^{7} \mathrm{~cm}^{3}$

OR
80. $m^{3} x \frac{(100 \mathrm{~cm})^{3}}{(1 \mathrm{~m})^{3}}=80 . m^{3} x \frac{1000000 \mathrm{~cm}^{3}}{1 \mathrm{~m}^{3}}=79520000 \mathrm{~cm}^{3}$

$$
=8.0 \times 10^{7} \mathrm{~cm}^{3}
$$

