Something to Note:

Many reactions never go to completion

Once some product is formed, reactants begin to reform

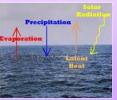
These are called *reversible reactions*

Let's start by saying:

There are 3 types of systems

Steady-State System

- Exhibits *constancy* of properties
- Exhibits no evidence of reversibility


Ex: stream/water burner/molecules

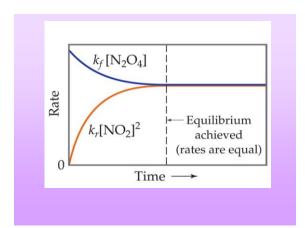
Open System

- Exhibits no constancy of properties
- Can exchange mass and heat energy
- · May exhibit some evidence of reversibility

Ex: evaporation

Closed System

- Exhibits constancy of properties
- · Matter cannot be exchanged
- · Heat can be exchanged
- · Exhibits reversibility
- Equilibrium systems are this type!
 Ex: closed jar of liquid/vapor



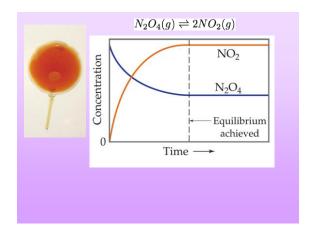
Ex:
$$2 \text{ HgO} \rightarrow 2 \text{ Hg} + \text{O}_2$$

 $2 \text{ HgO} \leftarrow 2 \text{ Hg} + \text{O}_2$ $2 \text{ HgO} \Leftrightarrow 2 \text{ Hg} + \text{O}_2$

Initially, only the forward reaction occurs
Then, the reverse reaction begins and increases in rate
As time continues, the forward reaction decreases in rate
Eventually, the forward rate equals reverse rate

Equilibrium

R_f = R_r



Chemical Equilibrium

The point at which concentrations of reactants and products in a closed system remain constant

Occurs when opposing reactions proceed at equal rates

$$R_f = R_r$$

Once equilibrium is reached, it appears that the reaction has stopped because concentrations don't change.

However...

The reactions (collisions) do not cease!

So it's really "Dynamic Equilibrium"

Equilibrium Expression

A quantitative expression of the equilibrium position A ratio of products to reactants at equilibrium

The rate of a reaction is proportional to the concentration of the reactants

Ex:
$$A \Leftrightarrow B$$

 $R_f = k_f[A]$ $R_r = k_r[B]$

At equilibrium ...
$$R_f = R_r$$

$$So..... k_f[A] = k_r[B]$$

And therefore ...
$$\frac{k_f}{k_r} = \frac{[B]}{[A]} = K_{eq}$$

Equilibrium Constant, K_{eq}

The magnitude of K_{eq} is a measure of the extent to which the reaction has taken place at equilibrium

 $K_{eq} = 1$ conc. of reactant and product are equal

K_{eq} > 1 concentration of products greater (favors the products, lies to the right)

K_{eq} < 1 concentration of reactants greater (favors the reactants, lies to the left)

When writing the equilibrium expression and calculating the equilibrium constant, the coefficients from the balanced equation become exponents on their corresponding concentrations.

Ex:
$$aA + bB \leq cC + dD$$

$$K_{eq} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

Ex: Write the equilibrium expression for:

$$H_2(g) + I_2(g) \Leftrightarrow 2 HI(g)$$
 at $100^{\circ}C$

$$K_{eq} = \frac{[HI]^2}{[H_2][I_2]}$$

There are two kinds of K_{eq} :

- K_c is the K_{eq} using molar concentrations, M
- K_p is the K_{eq} using <u>partial pressures</u>

pressure caused by a substance in the gas phase in units of atmospheres, atm

Ex: Write the equilibrium expressions for:

$$H_2(g) + I_2(g) \Leftrightarrow 2 HI(g) \text{ at } 100^{\circ}C$$

$$\mathsf{K}_{c} \, = \frac{[\mathsf{H}\mathsf{I}]^{2}}{[\mathsf{H}_{2}][\mathsf{I}_{2}]} \qquad \quad \mathsf{K}_{p} \, = \, \frac{\mathsf{P}_{\mathsf{H}\mathsf{I}}^{2}}{\mathsf{P}_{\mathsf{H}_{2}}\mathsf{P}_{\mathsf{I}_{2}}}$$

You can convert between K_c and K_p

$$K_p = K_c(RT)^{\Delta n}$$
 change in # of moles of gas Kelvin temp 0.0821 (Gas Law Constant)

Ex: Calculate K_c for the following reaction at 100°C.

$$H_2(g) + I_2(g) \leq 2 HI(g)$$

Equilibrium concentrations: $[H_2] = 0.31$ $[I_2] = 0.065$ [HI] = 0.092

$$K_c = \frac{[HI]^2}{[H_2][I_2]} = \frac{(0.092)^2}{(0.31)(0.065)} = 0.42$$

Ex: Calculate K_p for the above K_c.

$$K_p = K_c(RT)^{\Delta n}$$

 $= 0.42(0.0821 \times 373)^{0}$

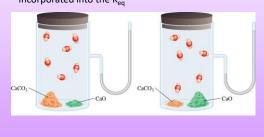
= 0.42

NOTE: Keq's don't have units on them

Ex: An equilibrium mixture of H₂, I₂ and HI gases at 425°C consists of 4.6 x 10⁻³M H₂, $0.74 \times 10^{-3} \text{ M I}_2$, and $13.5 \times 10^{-3} \text{M HI}$. What is the equilibrium constant for the system at this temp?

Homogeneous Equilibrium

Reactions in which all species are in the same phase Ex: $N_2O_4(g) \leq 2NO_2(g)$


Heterogeneous Equilibrium

Reactions with substances in more than one phase Ex: $CaCO_3(s) \Leftrightarrow CaO(s) + CO_2(g)$

NOTE: Concentrations of solids and liquids are not included in the equilibrium expression

liquid or solid is constant and therefore, are incorporated into the K_{eq}

At a constant temperature, the concentration of a

 $CaCO_3(s) \leq CO_2(g) + CaO(s)$ As long as some CaCO₃ or CaO remain in the system, the amount of CO₂ above the solid will remain the same.

Ex:
$$BaCO_3(s) \leq BaO(s) + CO_2(g)$$

 $Keq = [CO_2]$

Ex: BaO(s) +
$$CO_2(g) \Leftrightarrow BaCO_3(s)$$

$$Keq = \frac{1}{[CO_2]}$$

Reaction Quotient, Q

- The constant calculated using concentrations that aren't necessarily equilibrium concentrations
- If Q = Keq, the reaction is at equilibrium
- If Q < Keq, it is too far left (reactants favored) forward reaction is spontaneous
- If Q > Keq, it is too far right (products favored) reverse reaction is spontaneous

Ex: $A \leftrightarrows B$ Keq = 4.4×10^2

[A] = 2.3×10^{-4} , [B] = 5.8×10^{-3} Is the system at equilibrium?

$$Q = \frac{[B]}{[A]} = \frac{5.8 \times 10^{-3}}{2.3 \times 10^{-4}} = 2.5 \times 10^{1}$$

This system is not at equilibrium.

Too much reactant

Needs to move in the forward direction to reach equilibrium