* Enthalpy \& Thermodynamics

*Exothermic - energy is released (given off), surrounding temperatures increases

$$
A+B \rightarrow C+D+\text { Energy }
$$

*Example:

2 H atoms $\rightarrow \mathrm{H}_{2}$ molecule + energy $\Delta \mathrm{H}_{\mathrm{rxn}}$
*The total PE of the nuclei and electrons in the H_{2} molecules is less than the total PE of the nuclei and electrons in the two separate H atoms
*Also, if the same amount of energy is added to a H_{2}, it can break the molecule into 2 separate H atoms
*Endothermic - energy is absorbed, surrounding temperature decreases

$$
A+B+\text { Energy } \rightarrow C+D
$$

$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$

*Enthalpy (H)

*Heat released or absorbed during a constant pressure process
${ }^{*} \Delta H_{r x n}=$ change in enthalpy during a reaction
*reflects the differences in the potential energies associated with bonds in the reactants compared to bonds in the products

*How can the enthalpy of a reaction be calculated?

*Enthalpy of a free element is zero, at STP

* STP $=$ Standard Temperature $\left(25^{\circ} \mathrm{C}=278 \mathrm{~K}\right)$ \& Standard Pressure (1 atm)
*Enthalpy of a compound can be found in tables (p. 1100 - Appendix C)

* Heat of Formation

*change in enthalpy when one mole of a compound is produced from free elements

- Ex: water $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}=-286 \mathrm{~kJ} / \mathrm{mol}$ exothermic $(-\Delta \mathrm{H})$ for the reaction: $\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$

More Examples

${ }^{*} \mathrm{H}_{3} \mathrm{PO}_{3}$

$$
\frac{3}{2} \mathrm{H}_{2}+\mathrm{P}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3} \quad \Delta \mathrm{H}_{\mathrm{f}}^{\circ}=-964 \mathrm{~kJ} / \mathrm{mol}
$$

* NaHCO_{3}
$\mathrm{Na}+\frac{1}{2} \mathrm{H}_{2}+\mathrm{C}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{NaHCO}_{3} \quad \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}=-947.7 \mathrm{~kJ} / \mathrm{mol}$
*There will always be a coefficient of ' 1 ' on the product side (compound) in all heat of formation equations

*Heat of Reaction

$\Delta \mathrm{H}=$ change in enthalpy for a reaction

$$
\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=\mathrm{H}^{\circ}{ }_{\text {products }}-\mathrm{H}^{\circ} \text { reactants }
$$

endothermic - $\Delta \mathrm{H}$ is positive exothermic - $\Delta \mathrm{H}$ is negative

Ex: Calculate the heat of reaction for:

$$
\begin{gathered}
2 \mathrm{NaClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{NaCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \\
-358 \mathrm{~kJ} / \mathrm{mol}-411 \\
\Delta \mathrm{H}=? ? ? \\
\begin{array}{cl}
\Delta \mathrm{H}^{\circ}= & {[2(-411)+0]-2(-358)} \\
& =822-(-716) \\
= & -106 \mathrm{~kJ}
\end{array}
\end{gathered}
$$

Ex: Calculate the heat of reaction for:

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \\
& 36 \mathrm{~kJ} / \mathrm{mol} \quad 0
\end{aligned} \quad \begin{aligned}
& \Delta \mathrm{H}=? ? ? \\
& \begin{aligned}
& \begin{aligned}
\mathrm{H}
\end{aligned} \\
& \\
&= {[2(0)+0]-2(-286) } \\
&=0 \\
&=572 \mathrm{~kJ}
\end{aligned}
\end{aligned}
$$

*Thermochemical Equation

shows both the balanced equation and the $\Delta \mathrm{H}$

$$
\begin{gathered}
2 \mathrm{NaClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{NaCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \\
\Delta \mathrm{H}=-106 \mathrm{~kJ}
\end{gathered}
$$

*A chemical reaction would include only the top line!!

Ex: How much energy is released if 18 g of NaClO_{3} decomposes by the reaction shown above?

More Examples (p. 206 \#45)
 $\mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})} \rightarrow \mathrm{AgCl}_{(\mathrm{s})} \quad \Delta \mathrm{H}=-65.5 \mathrm{~kJ}$

a) Calculate $\Delta \mathrm{H}$ when 0.45 mol AgCl produced.
b) Calculate $\Delta \mathrm{H}$ when 9.00 g AgCl produced.
C) Calculate $\Delta \mathrm{H}$ when $9.25 \times 10^{-4} \mathrm{~mol} \mathrm{AgCl}$ dissolves.

