

*Example: 2H atoms \rightarrow H₂ molecule + energy Δ H_{rxn}

*The total PE of the nuclei and electrons in the H₂ molecules is less than the total PE of the nuclei and electrons in the two separate H atoms

*Also, if the same amount of energy is added to a H₂, it can break the molecule into 2 separate H atoms

*How can the enthalpy of a reaction be calculated?

*Enthalpy of a *free element* is zero, at STP

* STP = Standard Temperature (25°C = 278 K) & Standard Pressure (1 atm)

*Enthalpy of a *compound* can be found in tables (p. 1100 - Appendix C)

*Heat of Reaction

 ΔH = change in enthalpy for a reaction

 $\Delta H^{\circ}_{rxn} = H^{\circ}_{products} - H^{\circ}_{reactants}$

endothermic - ΔH is positive exothermic - ΔH is negative

Ex: Calculate the heat of reaction for:

$$\Delta H^{\circ} = [2(0) + 0] - 2(-286)$$
$$= 0 - (-572)$$
$$= 572 \text{ kJ}$$

Ex: Calculate the heat of reaction for:

∆H = ???

$$\Delta H^{\circ} = [2(-411) + 0] - 2(-358)$$

= 822 - (-716)
= -106 kJ

*Thermochemical Equation

shows both the balanced equation and the ΔH

$$2 \text{ NaClO}_3(s) \rightarrow 2 \text{ NaCl}(s) + 3 \text{ O}_2(g)$$

*A chemical reaction would include only the top line!!

Ex: How much energy is released if 18 g of $NaClO_3$ decomposes by the reaction shown above?

 $\label{eq:ag} \begin{array}{rcl} Ag^{*}{}_{(aq)} \ + \ Cl^{*}{}_{(aq)} \ \rightarrow \ AgCl_{(s)} \ & \Delta H = -65.5 \ kJ \\ \hline \mbox{a)} \ \mbox{Calculate } \Delta H \ \mbox{when } 0.45 \ \mbox{mol AgCl produced.} \end{array}$

- **b)** Calculate ∆H when 9.00 g AgCl produced.
- C) Calculate ΔH when 9.25 x 10⁻⁴ mol AgCl dissolves.