PERIODIC PROPERTIES PERIODIS PROPERTIES

PERIODIC PROPERTIES OF ELEMENTS

- · The properties of the elements exhibit trends.
- · The trends can be predicted using the periodic table.
- They can be explained by analyzing the electron configurations

A LITTLE HISTORY...

1800's

- Knowledge of chemical processes increases
- Allowed for the isolation of more elements
- Need for organizing and grouping

A LITTLE HISTORY...

1869

Mendeleev (Russia) and Meyer (Germany) published identical papers

- Chemical and physical properties reoccur
- periodically with increasing atomic mass

Mendeleev went beyond just arranging the elements

- Assumed blank spaces were undiscovered elements, for which he predicted the properties of, based on the properties of neighboring elements
- These elements were shortly discovered and were as he described

Mendeleev did have a problem with the order of: Co-Ni and Te-I

A LITTLE HISTORY (CONT.)

1913

Moseley - with x-ray techniques, found atomic number

Modern Periodic Law

There is a periodic repeat of properties when elements are arranged by an increase atomic number

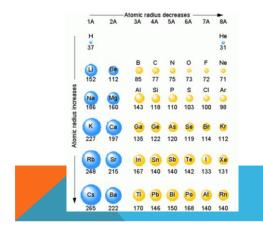
Why is that??

QUANTUM THEORY

 The behaviors of elements repeat because electron arrangements repeat.

Be 1s2 2s2

Mg 1s² 2s² 2p⁶ 3s²


 $\text{Ca} \qquad \quad 1 \text{s}^2 \, 2 \text{s}^2 \, 2 \text{p}^6 \, 3 \text{s}^2 \, 3 \text{p}^6 \, 4 \text{s}^2$

Sr [Kr] 5s²

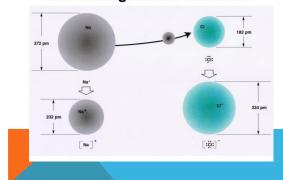
 Elements in the same group (column) have the same number of valence electrons

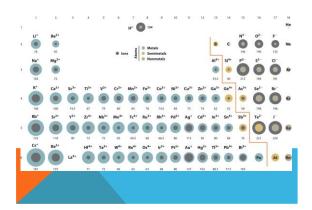
ATOMIC SIZE (RADIUS)

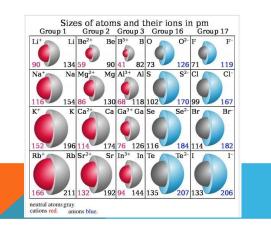
- Decreases left to right across the periodic table
 - As nuclear charge increases, the attraction between the nucleus and electrons increases
- Increases top to bottom on the periodic table
 - As the number of energy levels increases, the outermost electrons are farther away
 - ***Also: As the number of energy levels between the outer electrons and the nucleus increases, the attraction between the nucleus and the outer electrons decreases (shielding effect)

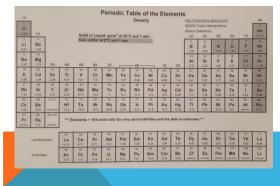
IONIC SIZE (RADIUS)

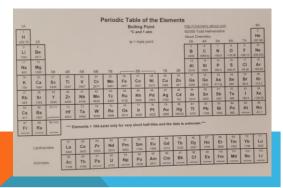
Anions - gain of electrons (generally nonmetal ions)

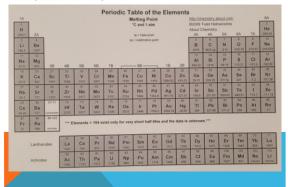

- Are larger than the neutral atom
- The increased number of electrons reduces attractive charge on each


Cations - loss of electrons (generally metal ions)


- Are smaller than neutral
- Usually involves the loss of valence electrons (eliminating a full level) in addition to the excess positive charge drawing the remaining electrons closer


Size Change in Ion Formation

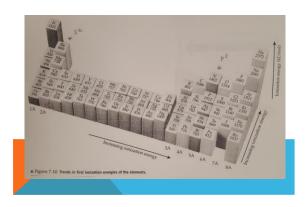


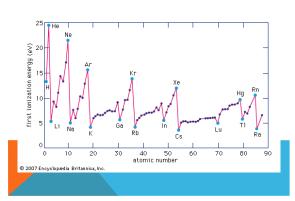

OTHER TRENDS

OTHER TRENDS

OTHER TRENDS

IONIZATION ENERGY (IE)


The energy required to remove the outermost electron from a gaseous atom


$$atom_{(g)} \rightarrow cation_{(g)} + e$$
- $\Delta E = ionization energy$

1st IE of elements:

- Increases moving left to right across the periodic table
- Decreases moving top to bottom

(The opposite trend of atomic size - is there a connection?)

IONIZATION ENERGY (IE)

There is a break in the trend at Be and N. Why?

Be - alkaline earth metals s^2 = partial stability

N - nitrogen group p^3 (½ filled sublevel) = partial stability

 $I_{\text{1}}\left(\text{1}^{\text{st}}\text{ ionization energy}\right)$

• The energy to remove the outermost electron

 $I_2 \, (2^{\rm nd} \, {\rm ionization} \, {\rm energy})$

• The energy to remove a second (once the 1st one is gone)

 $I_{\text{3}}\left(\text{3}^{\text{rd}}\text{ ionization energy}\right)$

• The energy to remove a third (once the first two are gone)

Successive Ionization Energies in Kilojoules per Mole for the Elements in Period $3\,$

	———General increase———→								
	Element	I_1	I_2	I_3	I_4	I_5	I_6	I_7	
1	Na	495	4560						
decrease-	Mg	735	1445	7730	Core el	ectrons*			
Te	A1	580	1815	2740	11,600				
æ	Si	780	1575	3220	4350	16,100			
	P	1060	1890	2905	4950	6270	21,200		
General	S	1005	2260	3375	4565	6950	8490	27,000	
Ğ	Cl	1255	2295	3850	5160	6560	9360	11,000	
1	Ar	1527	2665	3945	5770	7230	8780	12,000	

*Note the large jump in ionization energy in going from removal of valence electrons to removal of core electrons.


With each additional electron removed, the IE increases.

Note: a BIG increase at some point in the series for each element. Why?

For Na, at I $_{\rm 2}$

For Mg, at I $_{\rm 3}$

For P, at I $_{\rm 6}$

ELECTRON AFFINITY

The energy change that occurs when an electron is added to a gaseous atom

 $\mathsf{atom}_{(g)} \, + \, \mathsf{e}\text{-} \, \to \, \mathsf{anion}_{(g)} \quad \, \Delta \mathsf{E} \, \mathsf{=} \, \mathsf{e}\text{-}\, \mathsf{affinity}$

- Halogens: Largest negative values
- Noble gases: Positive values
- Alkaline earth metals/Nitrogen group elements:

full s subleve

1/2 full p sublevel

 These are either positive or not as negative as would be predicted based on the trend

Electron Affinities (kJ/mol)

1A							8A
H -73	2A	3A	4A	5A	6A	7A	He >0
Li -60	Be >0	B -27	C -122	N >0	O -141	F -328	Ne >0
Na -53	Mg >0	Al -43	Si -134	P -72	S -200	Cl -349	Ar >0
K -48	Ca -2	Ga -30	Ge -119	As -78	Se -195	Br -325	Kr >0
Rb -47	Sr -5	In -30	Sn -107	Sb -103	Te -190	I -295	Xe >0

Copyright © 2008 Pearson Prentice Hall, Inc.

METALS

Properties

- Shiny, Malleable, Ductile
- Oxides form basic ionic solids Ex: $Na_2O_{(s)} + H_2O_{(l)} \rightarrow 2 NaOH_{(aq)}$
- React with acids to form salt and water
- Ex: $MgO_{(s)} + 2 HCl_{(aq)} \rightarrow MgCl_2 + H_2O_{(l)}$
- Low ionization energies

Metallic character

The extent to which an element exhibits these physical/chemical properties

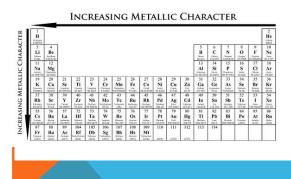
- Decreases left to right across the periodic table
- Increases top to bottom

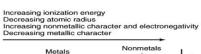
NONMETALS

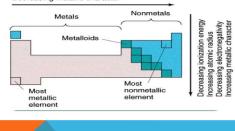
Properties

- More diverse in behavior than metals
- Non-lustrous. Poor heat/electrical conductors
- Lower melting point than metals
 - Most nonmetal oxides are acidic

$$\text{Ex: CO}_{2(g)} \ + \ \text{H}_2\text{O}_{(I)} \ \rightarrow \ \text{H}_2\text{CO}_{3(aq)}$$


React with bases to form salt and water


Ex:
$$\mathrm{CO}_{2(\mathrm{g})}$$
 + 2 $\mathrm{NaOH}_{(\mathrm{aq})}$ \rightarrow $\mathrm{Na}_2\mathrm{CO}_{3(\mathrm{aq})}$ + $\mathrm{H}_2\mathrm{O}_{(\mathrm{I})}$


METALLOIDS

- Properties intermediate between metals and nonmetals
- Useful as semiconductors

Ex: Silicon - metallic luster, but brittle

E- CONFIGURATIONS FOR IONS

- Loss or gain of e-
 - Loss of electrons (cation) positive charge
 - Gain of electrons (anion) negative charge

ISOELECTRONIC SERIES
 same # of e Same e- configuration

Write the condensed e- configuration for the following.

• CI • S

• S⁻²

• P

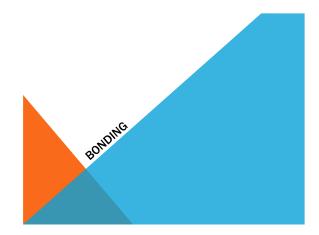
• P-3

NOBLE GASES

- Stable
- Full s & full p sublevels
- 2 e- + 6 e- = 8 e-
- Don't bond to form compounds (in nature)

MORE PRACTICE W/ ION E- CONFIGURATIONS

- Write the condensed e- configuration for the following:
 - Ca Ca+2
 - Zn Zn+2
 - Ga Ga+3
 - Pb⁺²



ION FORMATION OF TRANSITION METALS

- Usually can't attain noble gas configuration
- Octet rule has limitations
- Atoms don't usually lose more than 3 e-
- Electrons are lost from highest n level first

Ex: cobalt $[Ar]4s^23d^7$ Co^{+2} $[Ar]3d^7$ Co^{+3} $[Ar]3d^6$

CHEMICAL BONDS

- forces that hold groups of atoms together to make them function as a unit
- •valence electrons are shared or transferred

Ionic	Covalent	Metallic
Transfer e-	Sharing e-	Metal nuclei floating in a sea of e-
Electrostatic forces	Overlap of orbitals	
Metal-nonmetal	Nonmetal-nonmetal	Metals
NaCl	NO ₃	Cu

WHY BOND?

- The system can achieve a state of lower energy (become more stable)
- Octet Rule: bonded atoms tend to achieve 8 valence electrons

IONIC COMPOUNDS

Characteristics:

- · Atoms held together by ionic bonds
- · Consists of closely packed, oppositely charged ions
- · Metal + Nonmetal
- Brittle
- Relatively high melting and boiling points
- Soluble in water
- · Conduct electricity when molten or dissolved in water

Examples: NaCl, KBr, CaSO₄

IONIC BONDS

- One atom (metal) loses electron(s) ← endothermic
- One atom (nonmetal) gains electron(s) ← exothermic
- The endothermic rxn is always larger in magnitude than the exothermic rxn
- Ex: For the reaction Na + $\frac{1}{2}$ Cl₂ \rightarrow NaCl

Na needs to **lose** an e- \rightarrow **IE** Na = +496 kJ/mol Cl needs to **gain** an e- \rightarrow **e- affinity** Cl = $\frac{-349 \text{ kJ/mol}}{+147 \text{ kJ/mol}}$

It appears that the formation of NaCl from ions does not decrease in energy (ie – is **not more stable**)

Na + Cl
$$\rightarrow$$
 Na⁺ + Cl⁻
[Ne] [Ar

However ... Na +
$$\frac{1}{2}$$
 Cl₂ \rightarrow NaCl ΔH_{f}° = -410.9 kJ/mol

In actuality....there is a decrease in energy (it is more stable as NaCl)

+147 kJ/mol \neq -410.9 kJ/mol ?!

- Stability of ionic compounds comes from the attraction between the positive and negative ions
- When the ions are drawn together, energy is released

Lattice Energy

The energy required to completely separate one mole of a solid ionic compound into gaseous ions

Ex:
$$NaCl_{(s)} \rightarrow Na^{+1}_{(g)} + Cl^{-1}_{(g)}$$
 $\Delta H_{lattice} = +788 \, kJ/mol$

 $\Delta H_{\text{lattice}}$ increases as the ionic charges increase and radii decrease

COLOUMB'S LAW

E = k
$$Q_1Q_2$$
 — charges on ions
d — distance between nuclei (nm)
 $2.31 \times 10^{-19} \text{ J nm}$

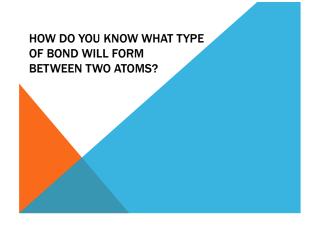
Crystal Lattice

Attraction between ions is multidirectional

Ex: NaCl each Na⁺¹ is surrounded by 6 Cleach Cl⁻ is surrounded by 6 Na⁺¹

Different ions pack together differently to produce different crystal shapes

COVALENT COMPOUNDS

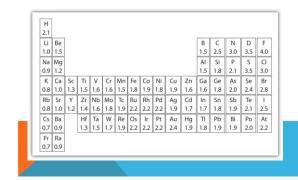

Characteristics

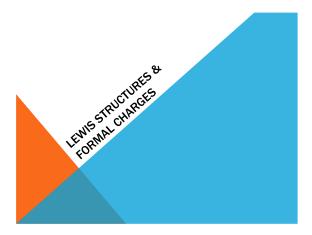
- form molecules
- relatively low melting and boiling points
- •have bond angles and bond lengths

Examples						
Sugar	Water	Natural gas				
$(C_6H_{12}O_6)$	(H ₂ O)	CH ₄				
		(methane)				

COVALENT BONDS

- Formed by two atoms sharing a pair of electrons between them
- Sharing may be equal or may not
 - a. equal sharing = *nonpolar* covalent bond
 - b. not equal sharing = **polar** covalent bond
- Polar covalent bonds
 - electrons attracted to one of the atoms in the bond more than the other
 - this creates a dipole



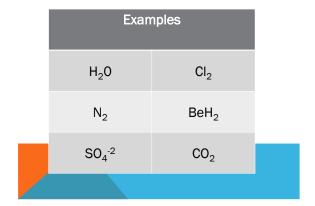

CHART OF ELECTRONEGATIVITY

- each element is assigned an numerical value
- the greater the value, the more that atom attracts shared electrons
- increases left to right on periodic table
- decreases top to bottom

If the difference in e-neg	If the difference in e-neg values of the two atoms is							
less than 0.5	nonpolar covalent							
from 0.5 to less than 2.0	polar covalent							
2.0 or greater	ionic							

CHART OF ELECTRONEGATIVITY

LEWIS STRUCTURES (ELECTRON DOT DIAGRAMS)


 Symbol of element is surrounded by dots and/or dashes that represent valence electrons

Examples				
Na Li				
Mg	С			
S	Ne			

LEWIS STRUCTURES FOR MOLECULAR COMPOUNDS

- Count up total number of valence e- of all atoms
- Distribute them in a way so that:
 - · hydrogen and alkali metals are surrounded by 2 e-
 - · alkaline earth metals are surrounded by 4 e-
 - boron group elements are surrounded by 6 e-
 - carbon group and beyond follow the Octet Rule (surround with 8 electrons)
- Dash = 2 e- = single bond

FORMAL CHARGES

- Charges assigned to each atom in a Lewis structure
- Answers the question: which structure is better?

of valence e- (all unbonded e-)

- $\underbrace{\text{number of e- in structure}} \quad (\frac{1}{2} \text{ of electrons in its bonds})$

formal charge

Ex: CO_2 O - C - O O = C = O $6 \quad 4 \quad 6 \quad 4 \quad 6$ $-7 \quad -4 \quad -5 \quad -6 \quad -4 \quad -6$

-1 0 +1 0 0 0

EXCEPTIONS TO OCTET RULE

- Atoms with less than an octet (mentioned previously)
 - Alkali Metals, Hydrogen and Helium → 2 e-
 - Alkaline Earth Metals → 4 e-
 - Boron Group elements → 6 e-
- Atoms with more than an octetEx: SF₆
- Molecules with an odd number of e- (radicals/unstable)

Comparing bonds between the same atoms:

Single bon	d stre	ength	< dou	uble	bond	strer	ngth < 1	triple bo	ond streng
	TABLE Single		erage Bo	nd Ent	thalpies (I	kJ/mol)			
	C—C	413 348	N—H N—N	391 163	O-O	463 146	F—F	155	
	C—N	293 358	N—O N—F	201 272	O—F O—Cl	190 203	CI—F CI—CI	253 242	
	C—F C—CI	485 328	N—CI N—Br	200	0—I	234		237	
	C—Br	276		243	S-H	339	Br—F Br—C1	218	
	C—I	240 259	H—H H—F	436 567	S—F S—Cl	327 253	Br—Br	193	
	Si—H	323	H—Cl H—Br	431 366	S—Br S—S	218 266	I—Cl I—Br	208 175	
	Si—Si	226 301	H—I	299			I—I	151	
	Si—O	368							
	Multip	le Bonds	3						
	C=C	614 839	N=N N≡N	418 941	O_2	495			
	C=N C=N	615 891	N=O	607	S=O S=S	523 418			
	C=O	799			3-10	419			
	C=0	1072							

BOND LENGTH

Comparing bonds between the same atoms:

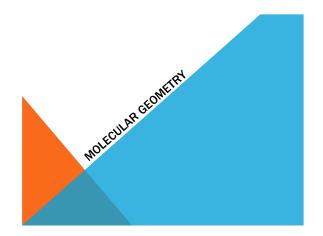
single bond length > double bond length > triple bond length

TABLE 8.5 Average Bond Lengths for Some Single, Double, and Triple Bonds					
Bond	Bond Length (Å)				
с-с	1.54	N-N	1.47		
C=C	1.34	N=N	1.24		
C = C	1.20	N = N	1.10		
C-N	1.43	N-O	1.36		
C=N	1.38	N=O	1.22		
C≡N	1.16				
		\circ	1.48		
co	1.43	o=o	1.21		
C=O	1.23				
C≡O	1.13				

RESONANCE STRUCTURES

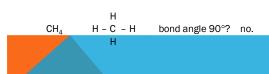
- Two or more equally good Lewis structures for one molecule
 Ex: NO₃⁻¹
- One short bond (double) and 2 longer bonds (singles)??
- No... three equal length bonds, intermediate of single and double
- Explain?

HOW DO WE EXPLAIN THIS?


- Electrons are delocalized
 - · double bond is moving from one atom to another
 - leads to an average bond length
 - · leads to higher stability
- Ex: Benzene, C₆H₆

METALLIC BOND

- Most metals have 1-3 valence electrons
- Most metals have empty d orbitals
- Valence electrons are loosely held and freely move from one nucleus to another


MOLECULAR GEOMETRY

 Description of the three dimensional shape of a molecule

VSEPR Theory (Valence Shell Electron Pair Repulsion)

Like charges repel, so electron groups around an atom move as far away from each other as possible

$$H_2O$$
 H - O - H linear? no.

LINEAR

• Includes all molecules with only two atoms

H ₂	H – H	
02	0 – 0	No bond angle
HCI	H – CI	

•Includes some molecules with three of more atoms

BeH ₂	H – Be – H	
		180° bond angle
N _o O	N – O – N	

TRIGONAL PLANAR

120° bond angle

Bond angle 107 $^{\circ}$

TRIGONAL PYRAMID

 NH_3

TETRAHEDRON

Bond angle 109.5 $^{\circ}$

$$\mathrm{CH_2Cl_2}$$
 H H – C – Cl Cl

BENT OR ANGULAR

 H_2O H - O - H Bond angle 105°

nonbonding pair of electrons (more repulsion)

NH₃ H – N – H H

H bonding pair of electrons (less repulsion)

H – N – H H

REPULSION ORDER

single bond < double bond < triple bond

2 e - 4 e - 6 e -

Y X trigonal planar 120° Z Z